Search results for " Positive solution"
showing 10 items of 11 documents
Positive solutions for nonlinear Robin problems with convection
2019
We consider a nonlinear Robin problem driven by the p-Laplacian and with a convection term f(z,x,y). Without imposing any global growth condition on f(z,·,·) and using topological methods (the Leray-Schauder alternative principle), we show the existence of a positive smooth solution.
Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian
2017
Abstract In the framework of variational methods, we use a two non-zero critical points theorem to obtain the existence of two positive solutions to Dirichlet boundary value problems for difference equations involving the discrete p -Laplacian operator.
Positive solutions for singular (p, 2)-equations
2019
We consider a nonlinear nonparametric Dirichlet problem driven by the sum of a p-Laplacian and of a Laplacian (a (p, 2)-equation) and a reaction which involves a singular term and a $$(p-1)$$ -superlinear perturbation. Using variational tools and suitable truncation and comparison techniques, we show that the problem has two positive smooth solutions.
Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential
2020
AbstractWe consider a parametric nonlinear Robin problem driven by the negativep-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation$$f(z,\cdot )$$f(z,·)is$$(p-1)$$(p-1)-sublinear and then the case where it is$$(p-1)$$(p-1)-superlinear but without satisfying the Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter$$\lambda \in {\mathbb {R}}$$λ∈Rwhich we specify exactly in terms of principal eigenvalue of the differential operator.
Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains
1995
Existence of two positive solutions for anisotropic nonlinear elliptic equations
2021
This paper deals with the existence of nontrivial solutions for a class of nonlinear elliptic equations driven by an anisotropic Laplacian operator. In particular, the existence of two nontrivial solutions is obtained, adapting a two critical point results to a suitable functional framework that involves the anisotropic Sobolev spaces.
Existence Results for Periodic Boundary Value Problems with a Convenction Term
2020
By using an abstract coincidence point theorem for sequentially weakly continuous maps the existence of at least one positive solution is obtained for a periodic second order boundary value problem with a reaction term involving the derivative \(u'\) of the solution u: the so called convention term. As a consequence of the main result also the existence of at least one positive solution is obtained for a parameter-depending problem.
On a Robin (p,q)-equation with a logistic reaction
2019
We consider a nonlinear nonhomogeneous Robin equation driven by the sum of a \(p\)-Laplacian and of a \(q\)-Laplacian (\((p,q)\)-equation) plus an indefinite potential term and a parametric reaction of logistic type (superdiffusive case). We prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter \(\lambda \gt 0\) varies. Also, we show that for every admissible parameter \(\lambda \gt 0\), the problem admits a smallest positive solution.
Two positive solutions for a nonlinear parameter-depending algebraic system
2021
The existence of two positive solutions for a nonlinear parameter-depending algebraic system is investigated. The main tools are a finite dimensional version of a two critical point theorem and a recent weak-strong discrete maximum principle.
Location of solutions for quasi-linear elliptic equations with general gradient dependence
2017
Existence and location of solutions to a Dirichlet problem driven by $(p,q)$-Laplacian and containing a (convection) term fully depending on the solution and its gradient are established through the method of subsolution-supersolution. Here we substantially improve the growth condition used in preceding works. The abstract theorem is applied to get a new result for existence of positive solutions with a priori estimates.